La qualità del sonno in Area critica. Studio prospettico

Antonella Dragonetti, Alessia D’Orazio, Giuseppina Garripoli
Infermieri, Medicina D’Urgenza Terapia Subintensiva, Ospedale San Giovanni Bosco, Torino

RIASSUNTO
Introduzione: i pazienti ricoverati in reparti ad alta intensità di cura hanno dimostrato un’alterata fisiologia del sonno con una maggiore frammentazione e diminuzione del tempo totale. L’accertamento e la promozione del sonno devono essere parte dell’assistenza infermieristica.

Materiali e metodi: studio osservazionale prospettico pre-post. Sono stati arruolati tutti i pazienti ammessi nella Medicina D’Urgenza Terapia Subintensiva dal 1 gennaio al 31 agosto 2015. Lo studio è stato sviluppato in tre fasi. Nella prima fase il questionario è stato somministrato a tutti i pazienti ricoverati. Nella seconda fase sono stati messi in atto alcuni interventi atti a favorire il riposo notturno. Nella terza fase è stato somministrato il questionario ad un secondo gruppo di pazienti per valutare gli effetti degli interventi.

Obiettivo: descrivere la qualità del sonno delle persone assistite in seguito all’attuazione di interventi specifici per favorire il riposo notturno.

Risultati: sono stati intervistati 100 pazienti, con un’età media di 68.5 (±11.2) anni. Sono pazienti ad alta instabilità clinica (SAPS >26). Il gruppo pre e post non hanno mostrato differenze significative rispetto a genere, età, SAPS e giornate di degenza. Le cause dell’interruzione del sonno sono multifattoriali. Vengono indagati 13 fattori e per 10 di essi, dopo la messa in atto degli interventi specifici, si evidenzia una riduzione della percezione come elemento disturbante con un p-value statisticamente significativo.

Conclusioni: lo studio ha descritto la qualità del sonno delle persone degenti e dimostrato come, con interventi mirati, si possa modificare la percezione di alcuni fattori che alterano il riposo notturno.

Parole chiave: assistenza in area critica, Terapia intensiva, Effetti avversi del rumore, Deprivazione del sonno, Disordini del sonno.

Articolo Originale
PERVENUTO IL 05/07/2017
ACCETTATO IL 18/09/2017

Corrispondenza per richieste: Antonella Dragonetti, antonella.dragonetti@asto2.piemonte.it, Alessia D’Orazio, alessia-dorazio@libero.it

Gli autori dichiarano di non avere conflitto di interesse.

Sleep Quality in ICUs. Prospective study

Antonella Dragonetti, Alessia D’Orazio, Giuseppina Garripoli
Registered Nurses, San Giovanni Bosco Subintensive & Emergency Unit, Turin

ABSTRACT
Introduction: Hospital patients in intensive care departments demonstrated an altered sleep physiology with increased fragmentation and decreased total time. The assessment and promotion of sleep must be part of nursing care.

Methods: prospective pre and post observational study. Enrollment of all patients admitted to the High-Dependency Unit from 1 January to 31 August 2015. The study was developed in three phases. In the first phase, the questionnaire was handed out to all patients. In the second phase some measures were set up to promote sleep. In the third phase, the questionnaire was handed out to a second group of patients to assess the effects of interventions.

Aims: to describe the sleep quality of hospitalized persons following the implementation of specific interventions to promote sleep.

Results: one hundred patients were interviewed, with an average age of 68.5 (± 11.2) years. These were clinically highly unstable patients (SAPS > 26). The pre-post groups showed no significant differences in gender, age, SAPS and days of hospitalization. The causes of disrupted sleep are multifactorial. Thirteen factors were investigated and for 10 of them, after the implementation of specific interventions, there was a reduced perception of disturbing elements with a statistically significant p-value.

Conclusions: the study described the sleep quality of patients and demonstrated through targeted interventions, how we can change the patient’s perception of some factors that affect night rest.

Key words: critical care nurse, Intensive Care Units, Adverse effects of noise, Sleep deprivation, Sleep Disorders.

Original article
RECEIVED 05/07/2017
ACCEPTED ON 18/09/2017

Correspondence: Antonella Dragonetti, antonella.dragonetti@asto2.piemonte.it, Alessia D’Orazio, alessia-dorazio@libero.it

The authors declare to have no conflict of interest.
INTRODUZIONE

Dormire è un bisogno fondamentale della persona e componente essenziale per assicurare il benessere dell’organismo in tutte le fasi della vita.1,2,3

La deprivazione del sonno è associata a disturbo del sistema immunitario, ridotta resistenza alle infezioni, alterazioni nel bilancio azotato, compromessa cicatrizizzazione delle ferite, alterazioni cardiorespiratorie, conseguenze neurologiche e cambiamenti emotivi come irritabilità e aggressività.4 Numerosi studi evidenziano alterazioni del riposo notturno della persona ricoverata e questo rappresenta un ostacolo alla guarigione.4,5,6

Molteplici sono i fattori ambientali e personali che incidono sulla qualità del sonno dei nostri pazienti.1,2 Tra i fattori ambientali indagati, il rumore risulta essere un importante problema di tutti gli ospedali, ostacolo alla guarigione.3,4,5,6

Lo strumento è strutturato in due parti. La prima permette di valutare la qualità del sonno percepito dalla persona a casa, durante le ore del riposo notturno. Il questionario è stato adattato in italiano.4

La sperimentazione svolta nel 2012 da Freedman “Factors affecting sleep quality of patients in intensive care unit” introdotta ma non validata nel contesto inglese.4

La Terapia Subintensiva e Medicina d’Urgenza (TSMU) è una struttura del Presidio Ospedaliero San Giovanni Bosco di Torino. Si compone di due e quattro posti letto a media intensità di cura e due camera di degenza per almeno 3 notti consecutive. Sono stati esclusi i pazienti semirimasti, quelli con un punteggio < -3 di Richmond Agitation Sedation Scale (RASS) e con segni di ICU-Delirium (positività ai criteri del Confusion Method Assessment for the Intensive Care Unit (CAM-ICU)).

È stato utilizzato un questionario sviluppato e validato nel 2012 da Freedman “Factors affecting sleep quality of patients in intensive care unit” tradotto ma non validato nel contesto italiano.4

Lo strumento è strutturato in due parti. La prima permette di valutare la qualità del sonno percepita dalla persona a casa, durante il riposo e il grado di sonnolenza diurna attraverso una scala Likert in cui 1 indica “molto cattiva” e 10 “molto buona”. Nella seconda parte si valuta la presenza durante le ore del riposo notturno di alcuni fattori ritenuti maggiormente disturbanti, in cui 1 indica “nessun disturbo” e 10 indica “molto disturbo”.

Il questionario è stato utilizzato in uno studio pilota di fattibilità nel contesto di studio. Sono state valutate maneggevolezza, semplicità di utilizzo, chiarezza dello strumento e tempi necessari alla compilazione. Non è stato necessario apportare alcuna modifica allo strumento di raccolta dati, questo è stato sottoposto a tutti i pazienti ricoverati, alla fine della degenza, attraverso un’intervista strutturata condotta sempre dallo stesso intervistatore.

Successivamente sono state apportate modifiche e interventi successivi non necessitano di ulteriori modifiche e sono valutabili per la versione definitiva.5,6

MATERIALI E METODI

Per raggiungere l’obiettivo è stato condotto uno studio quasi sperimentale prospettico pre – post, la popolazione è stata reclutata tra tutti i pazienti ammessi nella TSMU a partire dal 1 gennaio al 30 marzo 2015 (fase pre) e dal 1 giugno al 31 agosto 2015 (fase post) per almeno 3 notti consecutive. Sono stati esclusi i pazienti minori, quelli con un punteggio < -3 di Richmond Agitation Sedation Scale (RASS) e con segni di ICU-Delirium (positività ai criteri del Confusion Method Assessment for the Intensive Care Unit (CAM-ICU)).

Studi condotti in reparti ad alta intensità di cura, hanno dimostrato un’alterata funzione del sonno dei pazienti con una maggiore frammentazione e una diminuzione del tempo totale.7,8,9,10,11 L’accertamento e la promozione del sonno devono essere parte dell’assistenza del paziente nei diversi contesti di cura.4,5,6

La Terapia Subintensiva e Medicina d’Urgenza (TSMU) è una struttura del Presidio Ospedaliero San Giovanni Bosco di Torino. Si compone di una zona open-space con 7 posti letto per il monitoraggio continuo, invasivo e non, dei pazienti ad alta intensità di cura e due camera di degenza di due e quattro posti letto a media intensità di cura che non necessitano di monitoraggio continuo. La TSMU offre un servizio di risposta clinica e organizzativa ad una domanda sanitaria specifica: quella dei pazienti ad alto rischio evolutivo o clini- nicamente instabili, ma senza indicazioni o ricovero in terapia intensiva. La presenza dei parenti è consentita durante tutte le ore della giornata.

Obiettivo principale dello studio è quello di descrivere la qualità del sonno delle persone assistite nella TSMU in relazione (prima e dopo) all’attuazione di interventi specifici per favorire il riposo notturno.

MATERIALI E METODI

To reach the objective we conducted a semi-experimental prospective pre-post study. The sample population recruited were patients admitted to the TSMU from 1 January to 30 March 2015 (pre-phase) and from 1 June to 31 August 2015 (post-phase) hospitalized for at least 3 consecutive nights. Those excluded were minors, and those with a < -3 of Richmond Agitation Sedation Scale (RASS) score and with signs of ICU-Delirium (positivity to criteria of the Confusion Method Assessment for the Intensive Care Unit (CAM-ICU)).

The questionnaire used was drawn up and validated in 2012 by Freedman’s “Factors affecting sleep quality of patients in intensive care units”, which was translated but not validated or culturally adapted in Italian.4

The tool was structured in two parts. The first enabled the assessment of sleep quality perceived by the person at home, during hospital stay, and the degree of sleepiness during the day through a Likert scale where 1 indicates “very bad” and 10 “very good.” The second part assesses night sleep and the presence of some factors considered as main disruptive elements, where 1 indicates “no disturbance” and 10 indicates “very disturbed.”

The questionnaire was used in a pilot feasibility study in the survey context. User friendliness, clarity of the tool and the time needed for the completion were assessed. There was no need to make any changes on the data gathering tool and it was handed out to all the patients at the end of their stay, through a structured interview conducted always by the same interviewer.

Subsequently, modifications and environmental changes were made, and meetings were organized with the team to raise their
ambientali, organizzando incontri per sensibilizzare l’equipe al problema del sonno dei malati e condivisì interventi per favorirlo.

Sono state spostate nel turno di pomeriggio attività notturne rumorose, quali rioridare armadi e controllo defibrillatore. È stata posta attenzione ai rumori, luci evitabili, esempio il tono di voce degli operatori, il volume del telefono, la luce dell’intermeta che illumina la semintesa altrione. In collaborazione con il servizio di Ingegneria Clinica sono stati programmati gli allarmi di alcuni apparecchi elettromedicali, modulando l’intensità del volume e della luminosità nelle ore notturne.

Tabella 1. Caratteristiche generali del campione (100)

<table>
<thead>
<tr>
<th></th>
<th>Pre (1 gen-30 mar 2015)</th>
<th>Post (1 giu-31 ago 2015)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genere</td>
<td>M=33 (66)</td>
<td>M=27 (54)</td>
<td></td>
</tr>
<tr>
<td>Età</td>
<td>66,7 (± 12,8)</td>
<td>69,8 (± 14,3)</td>
<td>0,2633</td>
</tr>
<tr>
<td>SAPS</td>
<td>26,3 (± 9,8)</td>
<td>28,4 (± 9,5)</td>
<td>0,3688</td>
</tr>
<tr>
<td>Giorni degenza</td>
<td>7,2 (± 3,5)</td>
<td>9,3 (± 7,6)</td>
<td>0,0792</td>
</tr>
</tbody>
</table>

Tabella 2. Caratteristiche specifiche del campione. Diagnosi, trattamenti terapeutici e terapia farmacologica

<table>
<thead>
<tr>
<th></th>
<th>Pre (1 gen-30 mar 2015)</th>
<th>Post (1 giu-31 ago 2015)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepsi</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Embolia polmonare massiva</td>
<td>6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Insufficienza respiratoria tipo II</td>
<td>6</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Sanguinamento in ulcera gastrica</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>BPCO riacutizzata</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Politrauma</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Polmonite</td>
<td>-</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Contusione con versamento polmonare</td>
<td>-</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Altro</td>
<td>19</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Ventilazione polmonare non invasiva</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Trattamento dialitico</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Periodo post-operatorio</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Diuretici</td>
<td>28</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Corticosteroidi</td>
<td>19</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Opiacei</td>
<td>14</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Benzodiazepine</td>
<td>14</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Beta-bloccanti</td>
<td>12</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Antidepressivi</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Antipsicoticì</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ip/pertiroidea</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Magnesio</td>
<td>4</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 1. Sample characteristics (100)

<table>
<thead>
<tr>
<th></th>
<th>Pre (1 Jan-30 Mar 2015)</th>
<th>Post (1 June-31 Aug 2015)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genere</td>
<td>M=33 (66)</td>
<td>M=27 (54)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>66,7 (± 12,8)</td>
<td>69,8 (± 14,3)</td>
<td>0,2633</td>
</tr>
<tr>
<td>SAPS</td>
<td>26,3 (± 9,8)</td>
<td>28,4 (± 9,5)</td>
<td>0,3688</td>
</tr>
<tr>
<td>Hosp. days</td>
<td>7,2 (± 3,5)</td>
<td>9,3 (± 7,6)</td>
<td>0,0792</td>
</tr>
</tbody>
</table>

Tabella 2. Diagnosis, therapeutic treatments and drugs

<table>
<thead>
<tr>
<th></th>
<th>Pre (1 Jan-30 Mar 2015)</th>
<th>Post (1 June-31 Aug 2015)</th>
<th>Frequency (n = 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepsis</td>
<td>8</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Massive pulmonary embolism</td>
<td>6</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Pulmonary insufficiency type II</td>
<td>6</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Gastric ulcer bleeding</td>
<td>5</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Worsening of BPCO</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Polytrauma</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>-</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>Contusion with pulmonary discharge</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Other</td>
<td>19</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Noninvasive pulmonary ventilation</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Dialysis treatment</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Post-surgery period</td>
<td>3</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Diuretics</td>
<td>28</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>19</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>Opioids</td>
<td>14</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Benzodiazepine</td>
<td>14</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>12</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Antidepressives</td>
<td>10</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Antipsicoticì</td>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Hypo/hyperthyroidism</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Magnesium</td>
<td>4</td>
<td>14</td>
<td>4</td>
</tr>
</tbody>
</table>
Tabella 3. Percezione della qualità del sonno e della sonnolenza diurna (n=100)

<table>
<thead>
<tr>
<th></th>
<th>Pre (1 gen - 30 mar 2015)</th>
<th>Post (1 giu - 31 ago 2015)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Likert</td>
<td>Freqenza (%)</td>
<td>media (+ d.s.)</td>
</tr>
<tr>
<td>A casa</td>
<td><4</td>
<td>7,7</td>
<td>7 (1,4)</td>
</tr>
<tr>
<td></td>
<td>4-7</td>
<td>20 (40)</td>
<td>7 (14)</td>
</tr>
<tr>
<td></td>
<td>8-10</td>
<td>30 (60)</td>
<td>8 (16)</td>
</tr>
<tr>
<td>Durante la degenza</td>
<td><4</td>
<td>3,3</td>
<td>10 (20)</td>
</tr>
<tr>
<td></td>
<td>4-7</td>
<td>33 (66)</td>
<td>33 (66)</td>
</tr>
<tr>
<td></td>
<td>8-10</td>
<td>13 (26)</td>
<td>7 (14)</td>
</tr>
<tr>
<td>Sonno prima notte</td>
<td><4</td>
<td>17 (34)</td>
<td>5,8 (2,88)</td>
</tr>
<tr>
<td></td>
<td>4-7</td>
<td>18 (36)</td>
<td>5,8 (2,88)</td>
</tr>
<tr>
<td></td>
<td>8-10</td>
<td>15 (30)</td>
<td>5 (10)</td>
</tr>
<tr>
<td>Sonnolenza diurna dopo prima notte</td>
<td><4</td>
<td>34 (68)</td>
<td>36 (72)</td>
</tr>
<tr>
<td></td>
<td>4-7</td>
<td>12 (24)</td>
<td>9 (18)</td>
</tr>
<tr>
<td></td>
<td>8-10</td>
<td>15 (30)</td>
<td>15 (30)</td>
</tr>
<tr>
<td>Sonno ultima notte</td>
<td><4</td>
<td>31 (62)</td>
<td>25 (50)</td>
</tr>
<tr>
<td></td>
<td>4-7</td>
<td>15 (30)</td>
<td>15 (30)</td>
</tr>
<tr>
<td></td>
<td>8-10</td>
<td>18 (36)</td>
<td>18 (36)</td>
</tr>
<tr>
<td>Sonnolenza diurna dopo ultima notte</td>
<td><4</td>
<td>34 (68)</td>
<td>26 (52)</td>
</tr>
<tr>
<td></td>
<td>4-7</td>
<td>23 (46)</td>
<td>26 (52)</td>
</tr>
<tr>
<td></td>
<td>8-10</td>
<td>18 (36)</td>
<td>8 (16)</td>
</tr>
</tbody>
</table>

Tabella 3. Perception of sleep quality and day sleepiness (n=100)

<table>
<thead>
<tr>
<th></th>
<th>Pre (1 Jan - 30 Mar 2015)</th>
<th>Post (1 June - 31 Aug 2015)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Likert</td>
<td>Freqenza (%)</td>
<td>media (+ d.s.)</td>
</tr>
<tr>
<td>At home</td>
<td><4</td>
<td>7,7</td>
<td>7 (1,4)</td>
</tr>
<tr>
<td></td>
<td>4-7</td>
<td>20 (40)</td>
<td>7 (14)</td>
</tr>
<tr>
<td></td>
<td>8-10</td>
<td>30 (60)</td>
<td>8 (16)</td>
</tr>
<tr>
<td>During hospitalization</td>
<td><4</td>
<td>3,3</td>
<td>10 (20)</td>
</tr>
<tr>
<td></td>
<td>4-7</td>
<td>33 (66)</td>
<td>33 (66)</td>
</tr>
<tr>
<td></td>
<td>8-10</td>
<td>13 (26)</td>
<td>7 (14)</td>
</tr>
<tr>
<td>First night sleep</td>
<td><4</td>
<td>17 (34)</td>
<td>5,8 (2,88)</td>
</tr>
<tr>
<td></td>
<td>4-7</td>
<td>18 (36)</td>
<td>5,8 (2,88)</td>
</tr>
<tr>
<td></td>
<td>8-10</td>
<td>15 (30)</td>
<td>5 (10)</td>
</tr>
<tr>
<td>Day sleepiness after first night</td>
<td><4</td>
<td>34 (68)</td>
<td>36 (72)</td>
</tr>
<tr>
<td></td>
<td>4-7</td>
<td>12 (24)</td>
<td>9 (18)</td>
</tr>
<tr>
<td></td>
<td>8-10</td>
<td>15 (30)</td>
<td>15 (30)</td>
</tr>
<tr>
<td>Last night sleep</td>
<td><4</td>
<td>31 (62)</td>
<td>25 (50)</td>
</tr>
<tr>
<td></td>
<td>4-7</td>
<td>15 (30)</td>
<td>15 (30)</td>
</tr>
<tr>
<td></td>
<td>8-10</td>
<td>18 (36)</td>
<td>18 (36)</td>
</tr>
<tr>
<td>Day sleepiness after last night</td>
<td><4</td>
<td>34 (68)</td>
<td>26 (52)</td>
</tr>
<tr>
<td></td>
<td>4-7</td>
<td>23 (46)</td>
<td>26 (52)</td>
</tr>
<tr>
<td></td>
<td>8-10</td>
<td>18 (36)</td>
<td>8 (16)</td>
</tr>
</tbody>
</table>

Sono stati ottimizzati i monitoraggi e i settaggi degli allarmi ed in collaborazione con i medici è stata ottimizzata la terapia, e riadattata la terapia sedativa. Dopo l’applicazione delle modifiche organizzative e ambientali, il questionario è stato somministrato ai secondi 50 pazienti.

The monitoring and settings of alarms were optimized and with the cooperation of the doctors the schedule of administration of therapy was optimized along with the readaptation of sedative medications. After the application of the organizational and environmental changes, the questionnaire was handed out to the second batch.

Analisi dei dati

L’elaborazione dei dati è stata effettuata con l’utilizzo del software statistico Epiinfo versione 3.5.1. (CDC, GA, USA). L’analisi dei dati è stata svolta utilizzando la statistica descrittiva per valutare la qualità del sonno corretta con le variabili individuate. Le variabili qualitative sono state presentate come frequenze e percentuali, mentre quelle qualitative attraverso media, mediana e deviazione standard (DS). La significatività statistica è verificata con test t-student.

RISULTATI

Sono stati intervistati 100 pazienti (50 pre e 50 post). I due gruppi sono comparabili per genere, età, SAPS e giornate di degenza. Il campione è composto da persone anziane (pre 66.7 vs post 69.8) con un’alta instabilità clinica (SAPS>26). (Tabella I)

Nel gruppo post si evidenzia un aumento dei pazienti nel periodo post operatorio. I pazienti sottoposti a trattamento ventilatorio non invasivo (NIMV) risultano omogenei tra i due gruppi. (Tabella II)

Sia nel gruppo pre che nel post si evidenzia una riduzione della qualità del sonno percepita rispetto alla vita a casa, con un aumento della sonnolenza diurna. Tra la prima e l’ultima notte di degenza la differenza è statisticamente significativa. (Table III)

Il disturbo del riposo notturno indotto dai 13 fattori indagati con il questionario è complessivamente diminuito nel gruppo post e per 10 fattori la differenza è statisticamente significativa.

Il rumore ambientale, gli allarmi, le voci, i prelievi e il dolore risultano essere i fattori maggiormente disturbanti il riposo notturno in entrambi i gruppi. (Tabella IV)

Il disturbo del riposo notturno indotto dai 13 fattori indagati con il questionario è complessivamente diminuito nel gruppo post e per 10 fattori la differenza è statisticamente significativa.

Il rumore ambientale, gli allarmi, le voci, i prelievi e il dolore risultano essere i fattori maggiormente disturbanti il riposo notturno in entrambi i gruppi. Tra tutti i fattori c’è stata una riduzione statisticamente significativa, della percezione di disturbo. (Table IV)

RESULTS

A hundred patients (50 pre and 50 post) were interviewed. The two groups were compared according to gender, age, SAPS and days of hospitalization. The sample was composed of elderly people (pre 66.7 vs post 69.8) with high clinical instability (SAPS>26). (Table I)

The post-group evidenced an increase of post-surgery patients. The patients subjected to noninvasive ventilation (NIMV) were homogeneous among the two groups. (Table II)

Both the pre and post groups evidenced a reduced sleep quality compared to life at home, with increased bouts of sleepiness during the day. Between the first and last days of hospitalization, sleep quality improvement was denoted in the sleep perception of both groups. (Table III)

Night sleep disturbances induced by the 13 factors studied with the questionnaire had on the whole diminished in the post-group and for 10 factors the difference was statistically significant.

Environmental noise, alarms, voices, taking of blood, and pain were seen to be the main disturbing factors to night sleep for both groups. For all the factors there was a statistically significant reduction of perceived disturbance. (Table IV)

<table>
<thead>
<tr>
<th>Fattore</th>
<th>Media punteggio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rumore</td>
<td>5.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Allarmi</td>
<td>5.1</td>
<td>3.6</td>
</tr>
<tr>
<td>Voci</td>
<td>4.2</td>
<td>2.9</td>
</tr>
<tr>
<td>Campanelli</td>
<td>2.9</td>
<td>2.1</td>
</tr>
<tr>
<td>Telefoni</td>
<td>2</td>
<td>1.3</td>
</tr>
<tr>
<td>Luci</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Rilevazione parametri</td>
<td>2</td>
<td>2.1</td>
</tr>
<tr>
<td>Esami diagnostici</td>
<td>2.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Prenotizi</td>
<td>4.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Attività infermieristiche</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>Somministrazione</td>
<td>2.9</td>
<td>1.5</td>
</tr>
<tr>
<td>Aerosol</td>
<td>2.8</td>
<td>1.4</td>
</tr>
<tr>
<td>Dolor</td>
<td>5.3</td>
<td>2.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fattore</th>
<th>Mean scores</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td>5.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Alarms</td>
<td>5.1</td>
<td>3.6</td>
</tr>
<tr>
<td>Voices</td>
<td>4.2</td>
<td>2.9</td>
</tr>
<tr>
<td>Bells</td>
<td>2.9</td>
<td>2.1</td>
</tr>
<tr>
<td>Telephones</td>
<td>2</td>
<td>1.3</td>
</tr>
<tr>
<td>Lights</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Taking vital parameters</td>
<td>2</td>
<td>2.1</td>
</tr>
<tr>
<td>Diagnostic tests</td>
<td>2.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Lab draws</td>
<td>4.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Nursing care</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>Drugs administration</td>
<td>2.9</td>
<td>1.5</td>
</tr>
<tr>
<td>Aerosol</td>
<td>2.8</td>
<td>1.4</td>
</tr>
<tr>
<td>Pain</td>
<td>5.3</td>
<td>2.7</td>
</tr>
</tbody>
</table>
DISCUSSIONE

L’età media di 68,5 (±11.2) anni, secondo la letteratura, è un fattore che influenza sulla possibilità di soffrire di insorgenza, anche se in entrambi i campioni la maggior parte delle persone ha espresso al dire di godere di una discreta o buona qualità del sonno prima del ricovero e di notare che la popolazione anziana sia più suscettibile a sviluppare alterazioni al ritmo sonno veglia in relazione a cambiamenti personali ed ambientali.1,2

I pazienti anziani sono ad alta instabilità clinica e richiedono un costante monitoraggio; sia nel gruppo PRE che in quello POST lo score utilizzato per valutare la gravità (il SAPS II - Simplified Acute Physiology Score) è significativamente alto per la tipologia di ricoverati nella TSMU. Molte attività assistenziali sono necessarie anche durante le ore notturne motivo per cui il fattore “rilievo dei parametri vitali” non mostra differenze nei due gruppi. Alcuni farmaci presenti in entrambi i campioni possono influire sulla qualità del sonno, come ad esempio la terapia diuretica somministrata nelle ore serali o l’assunzione di benzodiazepine, che può induire risvegli frequenti e aumentare la sonnolenza diurna, gli steroidi, riconosciuti responsabili dell’incremento dello stato di veglia e frammentazione del sonno, alterandone la qualità.3,4,12,13 I risultati evidenziano una diminuzione nell’uso delle benzodiazepine nei due campioni e di terapia diuretica somministrata dopo le ore 18; questo può essere correlato con le informazioni apprese durante il corso di formazione specifico, che può aver indotto i medici a rivalutare e modificare alcune prescrizioni in merito. Si evidenzia invece un aumento delle prescrizioni di terapia steroida, motivato dalla maggiore percentuale nel gruppo post di pazienti affetti da patologie croniche, come insufficienza Respiratoria di tipo 2 che necessitano di tale terapia. Questo risultato deriva da un’efficacia degli interventi di miglioramento dell’assistenza posti in essere in particolare per quanto riguarda la revisione degli orari della somministrazione di alcune terapie. Confrontando la qualità del sonno percepita dal paziente, in entrambi i gruppi si evidenzia una riduzione della qualità del sonno percepita rispetto alla vita a casa con un aumento della sonnolenza diurna nel gruppo pre rispetto a quello post intervento. Emerge una differenza statisticamente significativa tra la percezione del sonno durante la prima notte di degenza tra i due gruppi. Questo fatto può trovare spiegazione nel fatto che l’inizio del ricovero è caratterizzato da una maggiore instabilità clinica e dal ritrovarsi in un contesto sconosciuto altamente tecnologico.13,14 Va tuttavia osservato che i punteggi medi evidenziano un netto miglioramento della qualità percepita da parte del campione post rispetto a quello post intervento.

Tra la prima e l’ultima notte di degenza emerge una diminuzione della percezione della sonnolenza in entrambi i gruppi. Questo risultato è importante anche in relazione al fatto che se le persone accusano minore sonnolenza diurna possono avere potenzialmente maggiori energie e capacità di concentrazione durante il giorno permettendo una partecipazione attiva alla cura e un maggior recupero del livello di autonomia.12,18

In relazione alle attività di assistenza per la rilevazione dei parametri vitali, la media dei punteggi dei due campioni si attesta su Likert 2, a significare che sono percepiti come poco disturbanti. Ritorlando ai fattori ambientali, si può osservare che il campione del gruppo post percepisce come fattori maggiormente disturbanti il rumore, gli allarmi e le voci. Confrontando questi risultati con quelli del gruppo pre si può osservare una riduzione dell’effetto disturbante per tutti e tre i fattori con differenza statisticamente significativa indicata da p<0.05. Anche questo miglioramento sta a indicare che il comfort ambientale è migliorato sensibilmente.

DISCUSSION

The mean age of 68.5 (±11.2) according to literature, is a possible factor that impacts on the possibility of insomnia, even if in both samples most of the patients seemed to enjoy discreet or good sleep quality before their hospitalization. We know that the elderly are more susceptible to developing alterations in the sleep-wake rhythm in relation to personal and environmental changes.4,5

The patients enrolled were clinically highly unstable and required constant monitoring; both in the PRE and the POST groups the score used to assess the gravity (SAPS II - Simplified Acute Physiology Score) was importantly high for the type of admission to the TSMU. Many care activities necessary during the night due to the factor regarding the “measurement of vital parameters” did not show any differences in the two groups.

Some drugs present in both samples could affect sleep quality, for example diuretics administered in the evening or the assumption of benzodiazepines, that may induce frequent arousals and increase sleepiness during the day, or steroids, recognized to be responsible for the heightening of wake conditions, and fragmentation of sleep, altering its quality.4,5,12,13,14 The results show a reduced use of benzodiazepine in the two samples and diuretics administered after 6 pm; this may be correlated with the information learned during the specific training course, that may have led the doctors to reasse and change some prescriptions to this regard. Instead there is evidence of an increased prescription of steroids, motivated by the greater percentage of patients in the group affected by chronic pathologies such as Type 2 Respiratory Failure that need such treatments.

This result proves the effectiveness of the interventions to improve the care activities implemented, especially with regard to the review of the schedules for the administration of some therapies. Upon comparing the sleep quality perceived by patients, both groups evidenced a reduction of sleep quality perceived compared to life at home, with an increased sleepiness during the day in the pre group as compared to the post group.

Between the two groups, a statistically important difference emerges regarding the perception of sleep in the first night of hospitalization. This may be explained by the fact that the start of hospitalization is characterized by greater clinical instability, and the awareness of being in an unfamiliar and highly technological environment.13,14 However, it must be denoted that the average scores evidence a clear improvement in the quality perceived by the post sample and this makes us assume that the interventions performed to reduce environmental noise were effective.

What emerges between the first and last night of the hospital stay, is the reduced perception of sleepiness in both groups. This result is important also in relation to the fact that if the patients suffer less sleepiness during the day, they may potentially have more energy and concentration capabilities to actively participate in the care activities and a greater recovery of independence levels.12,18

In relation to the care procedures for the measurement of vital parameters, the mean scores of the two samples are based on Likert 2, and signify that they are seen as scarcely disturbing. Going back to the environmental factors, we can see that the post group perceived noise, alarms and voices as the most disturbing factors. Upon comparing these results with those of the pre group, we can see a reduction of the disturbing effects for all the three factors with a statistically significant difference indicated as p<0.05. Also this improvement goes to show that environmental comfort has greatly improved.
Per quanto riguarda il fattore “telefoni” risulta non recare molto disturbo già nel gruppo pre, con un punteggio Likert medio di 2. Tale punteggio si è ulteriormente ridotto a 1,3 nel gruppo post. Questo perché è consuetudine del personale sanitario, già prima del corso di formazione, deviare le chiamate dei diversi telefoni del reparto su un apparecchio cordless posto all’interno dell’intermeria.

Per quanto riguarda le luci, i risultati dei due gruppi sono sovrapponibili. I valori medi depongono per una percezione come poco disturbante. Questo risultato può essere giustificato dal fatto che durante le ore notturne il personale raramente accende l’illuminazione posta sulla testiera del paziente, ma utilizza delle piccole pile portatili.

Una riflessione specifica riguarda la percezione del dolore come disturbo notturno. Il confronto tra i risultati dei due gruppi mostra che il dolore è percepito come meno disturbante e questo risultato è statisticamente significativo. Questo risultato, che può essere ricondotto a un miglior utilizzo della terapia farmacologica, è anche coerente con la letteratura che sottolinea come migliorando il comfort ambientale può migliorare anche la percezione del dolore.18

Tuttavia, il fatto che la percezione della qualità del sonno risulti di qualità inferiore rispetto a casa, sottolinea che il riposo notturno costituisce comunque un problema per le persone assistite. Si può ipotizzare che probabilmente sulla qualità del riposo notturno, oltre ai fattori ambientali, influiscano anche fattori personali relativi alla responsività della persona e rispetto alle reazioni/emozioni della situazione clinica che si sta vivendo, aspetto che non è stato valutato in questo studio. Questo viene sottolineato anche in altri studi, in cui si evidenzia come il sonno del paziente ricoverato in setting ad alta intensità sia frammentato, da questo nasce l’esigenza di sviluppare nuovi modelli organizzativi-assistenziali che promuovano e favoriscano il riposo.19

Tra gli interventi messi in atto in questo studio, in accordo con la letteratura, quelli non farmacologici risultano essere quelli che migliorano la durata e la qualità del riposo notturno, riducendo il rischio di deprivazione di sonno, iuc delirium e disturbo post traumatico da stress.20,21 Per questo motivo gli operatori sanitari dovrebbero essere sensibilizzati alla promozione del sonno del paziente e la valutazione del riposo notturno deve diventare parte dell’attività di nursing.20,22

CONCLUSIONI

Lo studio condotto presenta alcuni limiti come l’utilizzo di uno strumento che non ha seguito un processo di validazione, la scarsa numerosità campionaria e la conduzione monocratica che rendono i risultati poco generalizzabili. Nonostante ciò ha permesso di valutare la qualità del sonno percepita dalle persone degenti in TSMU al fine mettere in atto interventi specifici per migliorarli. I risultati sottostanti l’ipotesi che le interruzioni del sonno sono multifattoriali. In prospettiva è possibile ipotizzare di continuare il monitoraggio della qualità del sonno con ulteriori studi, individuare strategie di assistenza e di organizzazione delle relative attività coerenti con un maggior livello di comfort della persona. La conduzione dello studio e la riflessione sui risultati ha permesso agli infermieri di continuare a interrogarsi sul miglioramento della qualità dell’assistenza in relazione a un bisogno che è ancora spesso trascurato. Il tal senso l’infermiere può farsi promotore in equipe di riflessioni e decidere di valutare in profondità altri fattori oltre a quelli ambientali, come per esempio fattori personali inerenti le reazioni al problema di salute, che ostacolano il riposo notturno.

As to the “telephones” factor it seems to be of a disturbance for the pre group, with a mean Likert score of 2. This score is further reduced to 1.3 in the post group. This is because already before their training course, the care staff had been accustomed to diverting the calls of various phones to a cordless device situated in the infirmary.

With regard to the lighting system, the results of the two groups overlap. The mean rates signify a perception of scarce disturbance. This can be explained by the fact that during the night, the staff rarely turn on the lights located above the headrests of patients’ beds but use portable flashlight instead.

A specific reflection regards the perception of pain as a sleep disturbance factor. The comparison between the results of the two groups shows that pain is perceived as a less disturbing factor and this is statistically important. This result, traceable to a better use of drug treatments, is also recurrent in literature which underlines how the improvement of environmental comfort can also improve the perception of pain.18

However, the fact that the perception of sleep quality is seen to be lower compared to that at home, underlines that night rest is, however, a problem for the patients. It can be assumed that probably, not only environmental factors affect sleep quality, but also personal factors related to the responsiveness of the patient with respect to the reactions/emotions of the clinical situation being experienced. This aspect has not been considered in this survey but is also underlined in other studies that evidence how the sleep of patients hospitalized in highly intensive settings is fragmented and explains the need to develop new organizational-care models that promote and enhance rest.19

Among the interventions implemented in this study, in accordance with literature, the non-pharmacological ones seem to be those that improve the duration and quality of sleep, reducing the risk of sleep deprivation, ICU delirium and post-traumatic stress.20,21 This is why healthcare operators should be aware and concerned with promoting the patient’s sleep and the inclusion of night sleep assessment among nursing procedures.19,22

CONCLUSIONS

This study presented some limitations such as the use of a tool that did not undergo a validation process, the small sample of enrollees and the monocentric conduction that render the results scarcely generalizable. Despite this, it enabled us to assess the sleep quality of patients in the TSMU so as to implement specific interventions to improve it. The results support the assumption that the causes of sleep disruption are multifactorial. In this perspective we will continue to monitor sleep quality with further studies, and identify care strategies and organization of the related activities to foster greater comfort levels for the patient. The conduction of the study and reflection on the results enabled the nurses to continue their queries on the improvement on the quality of care in relation to a need that is often overlooked. In this sense, nurses may be promoters of team reflection and the decision to undertake more in-depth assessments, not only on environmental factors, but also, for example, on the personal factors related to health problems that hinder all-night sleep.
La cura del corpo in terapia intensiva
Quaderni dell’Assistenza in Area Critica

Guida al monitoraggio in Area Critica

Ossigenoterapia con cannule nasali ad alto flusso nei pazienti critici adulti
Quaderni dell’Assistenza in Area Critica

Per informazioni:
aniarti@aniarti.it